

PRECIPITAÇÃO PROVÁVEL PARA A REGIÃO DE JEQUITINHONHA, MG

Vico Mendes Pereira Lima¹; Raquel Nunes Cardoso²; Fernanda Alves Costa²

Resumo: objetivou-se com este trabalho estudar e comparar a adequação estatística de modelos de distribuição de probabilidades aplicados ao estudo da precipitação provável para a região de Jequitinhonha, MG. As distribuições: a) Distribuição Log-Normal 2 parâmetros; b) Distribuição Log-Normal 3 parâmetros; c) Distribuição Gama foram ajustadas aos dados mensais de precipitação. Os resultados de intensa variabilidade da chuva mostram que mesmo durante a estação chuvosa essa se encontra concentrada em alguns períodos, promovendo para a região um prejuízo imensurável em termos de quebra de produção da safra agrícola, tanto pela irregularidade da distribuição quanto pelos prejuízos ao solo oriundos da concentração das chuvas.

Palavras-chave: Veranicos. Semiárido. Vale do Jequitinhonha.

Introdução

O conhecimento do comportamento e da distribuição das precipitações fornece subsídios para determinar períodos críticos predominantes numa determinada região e informações que visem reduzir as conseqüências causadas pelas flutuações do regime pluviométrico, garantindo a soberania alimentar das populações através das estratégias de convívio com o semiárido ou implantação de culturas adaptadas à sazonalidade deste regime (Gomide, 1998).

Neste contexto, objetivou-se com este trabalho: i) estudar e comparar a adequação estatística de modelos de distribuição de probabilidades aplicados ao estudo da precipitação provável, pelos testes de Kolmogorov-Smirnov e Qui-Quadrado; ii) determinar qual modelo de probabilidades é mais adequado para a região e para distintos períodos; iii) estimar as precipitações prováveis para diferentes níveis de probabilidade, para a região de Jequitinhonha, MG.

Material e Métodos

Os dados da pesquisa foram obtidos a partir de registros pluviométricos da estação do município de Jequitinhonha (16°25'59"S;41°01'01"W) operada pela Companhia de Pesquisa de Recursos Minerais (CPRM) e sob responsabilidade

Professor do IFNMG, Campus Almenara. Bolsista CNPq. Email: vico.lima@ifnmg.edu.br

² Estudantes do curso de Eng. Agronômica IFNMG, Campus Almenara. Email: raquelnunes.c@hotamil.com.br; fernandaifnmg@gmail.com

da Agência Nacional de Águas (ANA), para os anos entre 1977 e 2002. O clima na região é Aw, segundo Köppen, com chuvas concentradas nos meses de verão.

Foram estudadas séries históricas com 21 anos de observações. As lâminas diárias foram totalizadas em períodos anual e mensal sendo aplicadas as seguintes distribuições: a) Distribuição Log-Normal 2 parâmetros; b) Distribuição Log-Normal 3 parâmetros; c) Distribuição Gama.

Para avaliar a adequação estatística das distribuições, em todos os períodos estudados, utilizou-se o teste de Kolmogorov-Smirnov e o teste de χ2 (Qui-Quadrado), ao nível de 5% de significância (Ferreira; 2005).

As precipitações prováveis foram estimadas para cada período utilizando a distribuição que apresentou o menor valor de χ2, nos níveis de probabilidade de 75, 85 e 95%, correspondendo, aos períodos de retorno de 4, 7 e 20 anos.

Resultados e Discussão

A primeira inferência que se pode desenvolver é a confirmação de uma característica marcante do clima semi-árido, ou seja, forte irregularidade da precipitação entre os anos. Foram encontrados anos de grandes secas, como 1988, com precipitação anual de 618,7 mm, e outros muito chuvosos, como 1992, com 1450,4 mm. A precipitação média encontrada para a região é de 991,3 mm anuais. Observa-se ainda que no período analisado ocorreram mais anos com precipitação anual abaixo da média do que acima (10 contra 8) e apenas 3 muito próximos da média. A variabilidade da precipitação também é evidente durante os meses dos anos, dividindo a região em duas estações bem definidas, uma seca, de abril a setembro e outra chuvosa, de outubro a março.

Nas Tabelas 1 está apresentado o teste de adequação estatística de Qui-Quadrado (χ^2), para as distribuições de probabilidades estudadas para os períodos mensal. De maneira geral, a distribuição Gama foi a que propiciou melhor adequação, com 100% das séries históricas adequadas, seguida da distribuição Log-Normal 3 parâmetros com 96% e, por último, da distribuição Log-Normal 2 parâmetros com apenas 69% das séries históricas. A distribuição Gama tem sido considerada a mais apropriada quando se estudam períodos mensais ou inferiores de precipitação provável, conforme Castro Neto & Silveira (1983).

TABELA 1 Teste de Qui-Quadrado (χ²) para as distribuições Log-Normal 2 parâmetros, Log-Normal 3 parâmetros e Gama da precipitação mensal.

Período	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Log 2P	3,95 ^A	1,41 ^A	0,51 ^A	0,64 ^A	5,94 ^A	6,14 ^A	2,98 ^A	0,45 ^A	8,78 ^{NA}	2,21 ^A	0,99 ^A	5,03 ^A
Log 3P	0,49 ^A	1,92 ^A	2,85 ^A	0,28 ^A	0,95 ^A	1,30 ^A	0,78 ^A	2,09 ^A	4,42 ^A	3,41 ^A	0,21 ^A	0,69 ^A
Gama	0,83 ^A	0,25 ^A	1,31 ^A	0,20 ^A	1,50 ^A	1,13 ^A	1,21 ^A	0,54 ^A	2,63 ^A	1,27 ^A	0,37 ^A	2,14 ^A

NA: distribuição não adequada; A: distribuição adequada.

A precipitação provável sugere uma lâmina mínima a ser garantida, com segurança associada ao nível de probabilidade trabalhado. Observa-se que o aumento no nível de probabilidade proporcionou uma menor lâmina provável, pois o aumento na confiabilidade da estimativa implica na redução do valor estimado. Para fins agrícolas, o nível de probabilidade mais recomendado é de 75%, ou seja, uma lâmina mínima a ser garantida para um determinado período em três a cada quatro anos. Considerando este nível de probabilidade, observa-se que a região de Jequitinhonha, MG, tem limitações sérias quanto ao desenvolvimento da maioria das culturas sendo essas limitações agravadas pela ocorrência de veranicos durante o período chuvoso.

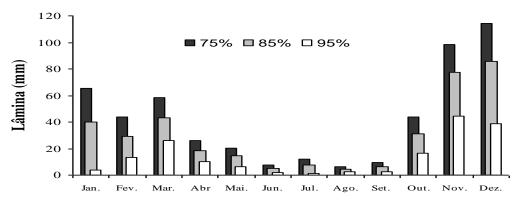


FIGURA 1. Chuva provável para a região de Jequitinhonha, MG, para o período mensal com níveis de probabilidade de 75, 85 e 95%.

Conclusões

Os resultados revelam a variabilidade da chuva que mesmo durante a estação chuvosa se encontra concentrada em alguns períodos, promovendo para a região um prejuízo imensurável em termos de quebra de produção da safra agrícola, tanto pela irregularidade da distribuição quanto pelos prejuízos ao solo oriundos da concentração das chuvas.

Referências

CASTRO NETO, P.; SILVEIRA, J. V. Precipitação provável para Lavras-MG, baseada na função de distribuição de probabilidade gama III: períodos de 10 dias. **Ciência e Prática**, Lavras, v. 7, n. 1, p. 58-65, 1983.

FERREIRA, D. F. Estatística básica. Lavras: UFLA, 2005. 654 p.

Agradecimentos

Agradecemos a FAPEMIG, CNPq e IFNMG pelo apoio dado à pesquisa.